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Abstract
We investigate how the competition between Kondo and antiferromagnetic (AF)
correlations influences the Josephson current through double quantum dots
(DQDs) and focus our attention on the situation where the superconducting
energy gap is smaller than the Kondo temperature. The finite-U slave-boson
mean-field method is adopted to treat electronic correlations. With weak AF
correlation, two Kondo spin singlets yield two Andreev bound states below the
Fermi level, and the low tunnelling probability through these singlet states leads
to small critical Josephson current Jc. Strong AF correlation results in a singlet
between the two localized spins, and only in a certain range can one bound state
be found. At an intermediate point, the competition between the Kondo and
AF correlations leads to a peak in the critical Josephson current, where just one
bound state is formed in the gap. The strong parity splitting causes the double
occupancy on the bonding orbital of two dots, and no Andreev bound state is
found with Jc approaching zero.

1. Introduction

Because of their tunability, quantum dot (QD) systems have attracted a lot of attention. When a
dot is connected to normal metallic leads, the coupling between the localized spin on the dot and
conduction electrons leads to the Kondo correlation, which is described by an energy scale TK,
the so-called Kondo temperature. When a QD is in the Kondo regime [1–5], the localized spin
and conduction electrons forms a spin singlet state,which yields the Abrikosov–Suhl resonance
and profoundly affects the electronic transport. If double quantum dots (DQDs) [6–10]
are coupled with each other by tunnelling matrix element td, the Coulomb interaction U in
dots yields an effective antiferromagnetic (AF) coupling JM = √

(2td)2 + (U/2)2 − U/2 (or
∼ 4t2

d /U if td � U ). This coupling tends to create a singlet state between the localized spins
on the two dots. When the two dots are connected to normal leads in a ‘lead–dot–dot–lead’
series, two Kondo spin singlets are formed with TK > JM, whereas with JM > TK one singlet
state is created between the two localized spins. This competition between the Kondo and AF
correlations results in a resonant conductance peak at JM ∼ TK in the half-filled case [8–10].
In the limit JM � TK and td � U/4, the conductance G approaches zero.
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Figure 1. Schematic illustration of the structure.

When a barrier is sandwiched between two identical superconductors (SCs), a Josephson
current J is caused by the phase difference ϕ between the two SCs. When the tunnelling
through the barrier is weak and conserves spin, the Josephson current can be expressed as
J = Jc sin(ϕ), where Jc is proportional to the normal conductance through the barrier. But
if the barrier is ferromagnetic, negative Josephson coupling is found [11]. Embedding a QD
in between two SCs results in competition between the Kondo effect and superconductivity at
low temperature [12, 13]. With TK smaller than the superconducting gap �, the Kondo spin
singlet is broken, which leads to negative Jc or a π-junction. With TK > �, the Kondo spin
singlet is kept. The ordinary 0-junction is obtained and the critical Josephson current Jc is
greatly enhanced by the Abrikosov–Suhl resonance [14–21]. Now, it is natural to ask how the
competition between Kondo and AF correlations influences the Josephson current if DQDs
are embedded in between two SCs.

In the present paper, our focus is put on the situation where � is smaller than TK and
the superconductivity is irrelevant with the basic characteristics of the ground state and
consequently does not qualitatively change the competitive behaviour between the Kondo
and AF correlations. Our purpose is to answer the following questions: (i) how does the
competition affect the Andreev bound states, and consequently the Josephson current through
the structure, and (ii) is there a fingerprint of the competition in Josephson current, like the
resonant peak at JM ∼ TK in the normal conductance? For this reason, we assume a structure
illustrated schematically in figure 1, describe the superconductivity in the BCS scheme and
adopt the finite-U slave-boson mean-field theory (f-U SBMFT) of Kotliar and Ruckenstein
(KR) [22, 23] to treat the electronic correlations. As we know from the previous studies, the
f-U SBMFT of KR can give qualitatively correct results if the localized spins on dots are not
ferromagnetic in nature [17–19] and can grasp the basic physics of DQD structures [10, 24].
When JM � TK, the two localized spins on dots and conduction electrons form two Kondo spin
singlets, and two Andreev bound states are found below the Fermi level. The low tunnelling
probability through the two Kondo singlets results in small Jc. With td increased, the bound
states gradually move out of the gap. At a specific JM ∼ TK, just one bound state remains in
the gap, and a peak appears in the Jc–td curve, which characterizes the competition between
the Kondo and AF correlations. With JM > TK, the two localized spins constitute a spin
singlet because of the AF correlation, and in a certain range only, an Andreev bound state can
be found. When td � U/4, the strong parity splitting leads to the double occupancy on the
bonding orbital of two dots, and no Andreev bound state is found with Jc approaching zero.

The organization of this paper is as follows. In section 2, the theoretical model and
calculation method are illustrated. In section 3, the numerical results and discussion on them
are presented. A brief summary is given in section 4.

2. Model and formulae

In the present paper, we investigate how the competition between the Kondo and AF correlations
affects the Josephson current through DQDs. The system is schematically illustrated in the
figure 1, where two dots and two SC leads are arranged in a ‘lead–dot–dot–lead’ series. The
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two dots are taken as Anderson impurities, each of which has one single-particle energy level ε
and an on-site Coulomb interaction U . The tunnelling matrix elements of dot–dot and dot–lead
are td and tL, respectively. Here, the two SCs are assumed entirely identical except a phase
difference ϕ, and without loss of generality it is assumed that ϕL = −ϕR = ϕ/2. Employing
the BCS theory to deal with the SCs, we describe this mesoscopic system by the following 1D
tight-binding Hamiltonian:

H = HL + HR + HD + HT, (1)

where Hα, (α = L, R) HD and HT are the Hamiltonians of leads, dot and the coupling between
them, respectively. They are

HL =
−1∑

i=−∞

(
−t

∑
σ

c†
i−1σ ciσ + �eiϕ/2c†

i↑c†
i↓ + H.c.

)
, (2)

HR =
∞∑

i=1

(
−t

∑
σ

c†
iσ ci+1σ + �e−iϕ/2c†

i↑c†
i↓ + H.c.

)
, (3)

HD =
∑

α=L,R

(
ε
∑

σ

c†
ασ cασ + Unα↑nα↓

)
− td

∑
σ

(
c†

Lσ cRσ + H.c.
)

(4)

and

HT = −tL
∑

σ

(
c†
−1σ cLσ + c†

1σ cRσ + H.c.
)
. (5)

Here nασ = c†
ασ cασ , with σ =↑ or ↓.

If one dot with energy level ε and Coulomb repulsion U is connected to normal
leads with the hopping integral tL, the Kondo temperature can be expressed as [25] TK =
U

√
JK

2π
exp(−π/JK), where JK = −2U�

εd(εd+U)
. With the Fermi energy being set as zero, the

hybridization strength � = 2t2
L/t and the correlation length of spin singlet ξK = h̄vF/TK =

2t/TK at zero temperature [26]. With DQDs embedded in between two SC leads, different
electronic correlations compete with each other. In the present paper, we are interested in the
situation where � is smaller than TK. If JM � TK, TK is the largest energy scale and two
Kondo spin singlets are formed, whereas if JM � TK, JM is also much larger than � and a
singlet is formed between the two localized spins. Here, the superconductivity is irrelevant to
the basic characteristics of the ground state and does not change the qualitative behaviour of
competition between the Kondo and AF correlations.

As we know from the previous studies [10, 17–19, 24], in this situation, the f-U
SBMFT of KR [22, 23] can give qualitatively correct results. In the framework of this
approach, eight auxiliary boson fields eα , pασ and dα are introduced to act as projection
operators onto the empty, singly occupied and doubly occupied electronic states at the
dot ‘α’, respectively. To eliminate the unphysical states, six constraints are imposed:∑

σ p†
ασ pασ + e†

αeα + d†
αdα = 1 and c†

ασ cασ = p†
ασ pασ + d†

αdα. To obtain the exact result
in the noninteracting limit, the fermion operator cασ should be replaced by cασ zασ , with
zασ = (1 − d†

αdα − p†
ασ pασ )−1/2(e†

α pασ + p†
ασ̄ dα)(1 − e†

αeα − p†
ασ̄ pασ̄ )−1/2. Therefore, the

Hamiltonian (1) can be replaced by the following effective Hamiltonian:

Heff = HL + HR + H̃D + H̃T +
∑

α=L,R

{
λ(1)

α

(∑
σ

p†
ασ pασ + e†

αeα + d†
αdα − 1

)

+
∑

σ

λ(2)
ασ

(
c†
ασ cασ − p†

ασ pασ − d†
αdα

)}
, (6)
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where the six constraints are incorporated by the six Lagrange multipliers λ(1)
α and λ(2)

ασ . Here,
the original HD and HT are replaced by

H̃D =
∑

α=L,R

(
ε
∑

σ

c†
ασ cασ + Ud†

αdα

)
− td

∑
σ

(z†
Lσ c†

Lσ cRσ zRσ + H.c.) (7)

and

H̃T = −tL
∑

σ

(
c†
−1σ cLσ zLσ + c†

1σ cRσ zRσ + H.c.
)
. (8)

To solve the effective Hamiltonian (6) at zero temperature, we first replace the slave
boson fields by their expectation values, then obtain the values of eα, pασ , dα, λ(1)

α and λ(2)
ασ by

minimization of the ground state energy E0 of the essentially noninteracting Hamiltonian with
respect to these parameters [23]. This is equivalent to the approach using the functional integral
method combined with the saddle-point approximation, and leads to a set of self-consistent
equations [22, 23]:∑

σ

p2
ασ + e2

α + d2
α = 1, (9)

〈0|nασ |0〉 = p2
ασ + d2

α, (10)

−tL
∑

σ

Re
(〈0|c†

−1(1)σ cL(R)σ |0〉)∂zL(R)σ

∂eL(R)

+ λ
(1)

L(R)eL(R) = 0, (11)

−tL
∑
σ ′

Re
(〈0|c†

−1(1)σ ′cL(R)σ ′|0〉)∂zL(R)σ ′
∂pL(R)σ

+ λ
(1)

L(R) pL(R)σ − λ
(2)

L(R)σ pL(R)σ = 0, (12)

and∑
σ

{
−tL Re

(〈0|c†
−1(1)σ cL(R)σ |0〉)∂zL(R)σ

∂dL(R)

− λ
(2)

L(R)σ dL(R)

}
+ λ

(1)

L(R)dL(R) + UdL(R) = 0. (13)

To self-consistently solve these equations, we have to calculate the expectation values
such as 〈0|c†

jσ ciσ |0〉, with |0〉 the ground state corresponding to a certain set of variational
parameters, then update the variational parameters from the above self-consistent equations,
and repeat these two steps until numeric convergence is reached. If a quasiparticle wavefunction
is expressed as α†|F〉 = ∑

i=−∞,...,−1,L,R,1,...,∞(ui c
†
i↑ − vi ci↓)|F〉 with |F〉 the Fermi

sea, acting as a background, whose intrinsic structure is irrelevant to our calculation,
the corresponding Schrödinger equation can be diagonalized to obtain a series of excited
eigenstates {α†

n |F〉}. c†
i↑ and ci↓ can be expressed by the quasiparticle operators {α†

n} and {ᾱn}.
Here, ᾱ†

n |F〉 = ∑
i (ui,nc†

i↓ + vi,nci↑)|F〉, the spin degenerate state with α†
n |F〉. Because |0〉

is a state with no quasiparticle excited, the expectation value of 〈0|c†
jσ ciσ |0〉 can be written

as
∑

n v∗
j,nvi,n . Generally, these expectation values can be analytically expressed in terms

of variational parameters with the help of the Nambu representation and the Green-function
technique [20, 27, 28], but the expressions are complex and tedious when double quantum
dots are considered, and we prefer direct diagonalization. In practical calculation, the numeric
diagonalization can only be performed in a finite cluster. (Here, the DQDs are located at the
centre of the cluster.) If the cluster size is much larger than the longer of the two length scales
of the system, ξK and the superconducting coherent length ξ�, the results obtained from the
cluster calculation are identical with those from the original system [29, 30]. As we can see
below the practical capacity of the numeric calculation is small for modern computers.

Due to the spin degeneracy, the number of independent variational parameters is reduced.
As soon as these independent variational parameters are determined, the Josephson current
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Table 1. Table of JM = √
(2td)2 + (U/2)2 − U/2 with U = 1.4. When tL = 0.4, TK = 0.0541,

which is close to JM at td = 0.15, where Jc takes its maximum value in figure 3.

td 0.01 0.1 0.15 0.2 0.4 0.8

JM 2.86 × 10−4 0.0280 0.0616 0.106 0.363 1.05

can be expressed at zero temperature as

J (ϕ) = 2

�

∂ E0(ϕ)

∂ϕ
= −2 Im

(
eiϕ/2

−1∑
i=−∞

〈0|c†
i↑c†

i↓|0〉 − e−iϕ/2
∞∑

i=1

〈0|c†
i↑c†

i↓|0〉
)

. (14)

Here the factor of two accounts for the spin degeneracy. Generally, if the barrier structure
sandwiched in between SCs is much shorter than ξ�, J can be presented as the sum of currents
transferred by individual Andreev bound states [31]. But here, the original definition of J is
adopted. The reason can be seen clearly below.

3. Results and discussion

In the following calculation, we always set t = 1, tL = 0.4, U = 1.4 and � = 0.04. Only the
results at the particle–hole symmetric point ε = −U/2 are considered in this paper. At this
point, the Kondo temperature of the normal state TK = 0.0541 and the corresponding Kondo
coherent length ξK = 37.0. Here, � is smaller than TK and ξ� = h̄vF/� = 2t/� = 50 since
the Fermi energy is set at zero. Generally, the effective Kondo temperature with td �= 0 is
always larger than � in our SBMFT calculation. In numeric diagonalization, the cluster size
is set as 300, which can guarantee the numeric convergence even if td = 1, and the dimension
of the matrixes to be exactly diagonalized is small for modern computers.

In figure 2, the eigenenergy variation of the six highest occupied states and the variation
of J with ϕ are presented for different td. With td increased, the energy positions of these
eigenstates are remarkably changed. When JM � TK, two Andreev bound states are formed
in the energy gap. With td increased, one of the two bound states closer to the gap edge gradually
moves out of the energy gap. At JM ∼ TK, that state entirely moves out of the energy gap
and only one bound state remains in the gap. With td further increased, the remaining bound
state also gradually moves out of the superconductor gap, and when td � U/4, no Andreev
bound state is kept in the gap. This phenomenon accounts for why the original definition of
J is adopted in our calculation. Here, only the eigenstates below the Fermi energy are given,
and because they are symmetric with the corresponding E–ϕ curves of eigenstates above the
Fermi level they are used as representatives. To obtain figure 2, we take td as 0.01, 0.1, 0.2, 0.4
and 0.8, respectively. The corresponding JM values at different td values are given in table 1.

At ϕ = 0, these eigenstates are degenerate in pairs. With ϕ �= 0 the Kramers degeneracy
is lifted, and at ϕ = π the splitting reaches to its maximum value. For a fixed td, the state
closer to the Fermi energy has the larger amplitude of eigenenergy variation. On the other
hand, for JM � TK and td � U/4, the amplitudes are smaller than those of the corresponding
states for JM ∼ TK. As a result, at JM � TK, the J–ϕ curve is sinusoidal in shape, and its
amplitude is small. With td increased, the amplitude of the J–ϕ curve is enhanced quickly,
and its shape deviates from the sinusoidal type. At JM ∼ TK, the amplitude reaches to its
maximum. With td further increased, the amplitude of the J–ϕ curve is depressed and the
sinusoidal line shape is recovered. These results are consistent with the characteristics shown
by the variation of the critical Josephson current Jc with td, which is plotted in figure 3. With
JM � TK and td � U/4, Jc is small. In the intermediate region, a peak appears. In fact, the



186 Z-Y Zhang

Figure 2. E–ϕ and J –ϕ curves for td = 0.01 ((a) and (b)), 0.1 ((c) and (d)), 0.2 ((e) and (f)), 0.4
((g) and (h)) and 0.8 ((i) and (j)). The other parameters are t = 1, tL = 0.4, U = 1.4, ε = −0.7
and � = 0.04.

Figure 3. Jc–td curve with the same other parameters as in figure 2. The filled squares correspond
to calculated results and the solid line is used to guide eyes.

bound state closer to the gap edge entirely moving out of the gap, the maximum amplitude
of E–ϕ curves and the peak value of Jc are realized simultaneously with the same td = 0.15,
which corresponds to JM = 0.0616 ∼ TK. The Jc peak plays the same role as the resonant
peak in the normal conductance and characterizes the competition between Kondo and AF
correlations.

How do we interpret the variation of Andreev bound states and critical Josephson current
with the direct coupling between the two dots? When JM � TK, two Kondo spin singlets are
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formed on the two dots, respectively, by the localized spin on dots and conduction electrons
on adjacent leads. As a result, two Andreev bound states are formed. Because of the small
tunnelling probability through the two Kondo singlets in this regime, Jc is also small. With
the AF correlation strengthened, the bound state closer to the gap edge gradually moves out
of the gap, and at JM ∼ TK there is one very bound state in the gap, which yields the peak in
the Jc–td curve. With JM > TK, the two localized spins on dots form a spin singlet because of
the AF correlation. In this situation, an Andreev bound state can only be found in a certain ϕ

range. With td � U/4, the parity splitting leads to double occupancy on the bonding orbital
of the two dots, which tends to block the electronic transport. The critical Josephson current
approaches zero and no Andreev bound state is formed. This scenario further explains how
the competition between Kondo and AF correlations affects the Josephson current through a
DQD system.

4. Summary

In summary, we investigate the influence of competition between the Kondo and AF
correlations on the Josephson current through DQDs in the situation where � is smaller than
the Kondo temperature TK. In this situation, the superconductivity does not qualitatively
change the competitive behaviour between the Kondo and AF correlations, and we can deal
with electronic correlations by the f-U SBMFT. When JM � TK, the two localized spins on
dots and conduction electrons form two Kondo spin singlets, and correspondingly two Andreev
bound states are found. The low tunnelling probability through the two Kondo singlets leads
to small Jc. With td increased, the Andreev bound states gradually move out of the energy gap.
At JM ∼ TK, only one bound state is formed in the gap and a peak appears in the Jc–td curve,
which characterizes the competition between the Kondo and AF correlations. The strong AF
correlation results in a singlet composed of the two localized spins, and one bound state can
only be found in a certain range of ϕ. When td � U/4, the strong parity splitting leads to
double occupancy on the bonding orbital of the two dots, and no Andreev bound state is formed
with Jc approaching zero.
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